
Journal of Sound and <ibration (2000) 229(3), 529}548
doi:10.1006/jsvi.1999.2494, available online at http://www.idealibrary.com on

0

ROBUSTNESS OF OPTIMAL DESIGN SOLUTIONS
TO REDUCE VIBRATION TRANSMISSION

IN A LIGHTWEIGHT 2-D STRUCTURE,
PART II: APPLICATION OF ACTIVE VIBRATION

CONTROL TECHNIQUES

D. K. ANTHONY AND S. J. ELLIOTT

Institute of Sound and <ibration Research, ;niversity of Southampton,
High,eld, Southampton S017 1BJ, England

(Received 8 October 1998, and in ,nal form 14 July 1999)

This is the second paper which considers the reduction of the vibration
transmission along a lightweight cantilever structure consisting of 40 rigidly joined
beams over a frequency band. In the "rst paper [1] the reduction was achieved by
allowing the geometry of the structure to be altered, such that the structure
provided an inherently better vibration isolation. In this paper, the variation
reduction over a band of frequencies is achieved using feedforward active vibration
control (AVC) techniques applied to the original structure geometry. The success of
AVC depends strongly on the position of the actuators. The actuator positions on
the structure which achieve the best reductions in vibration transmission are found
for one, two and three actuators. A robustness analysis is then performed to show
the sensitivity of each of the best solutions to small geometric perturbations. These
solutions are the most practical, being less sensitive to small geometric changes that
might occur, for example, as manufacturing tolerances. This is achieved by aplying
a su$cient number of random perturbations to determine the statistical
distribution of the performance. A probability limit is then applied in order to
predict a likely average minimum performance criterion. In addition to considering
the robustness of the performance, the control e!ort required to achieve active
control must be considered. If this increases signi"cantly when the structure is
perturbed the demand may not be met be a practical system, and the predicted
performance cannot be obtained.

( 2000 Academic Press
1. INTRODUCTION

Unwanted vibrations have many undesirable e!ect in structures. This paper is the
second companion paper concerned with the reduction of the transmission of
vibration in a lightweight structure. Passive optimization techniques were
considered in Part I of the paper [1]. In this paper a di!erent techniques is used:
that of active control of vibration (AVC). Whereas the passive optimization is
strictly applicable to reducing the vibration transmission at the design stage, the
application of AVC for this purpose is applicable to both the design stage and as
022-460X/00/030529#20 $35.00/0 ( 2000 Academic Press
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a post-design &&add-on'' to an existing structure. Finding the optimal actuator
positions is one part of the practical optimization problem, which in itself can be
demanding. Previous work [2, 3] has considered the highly combinatorial task of
"nding optimum actuator positions on structures to reduces vibration, or its e!ects.
Reference [4] details the use of such methods for static shape control of
a lightweight space structure. However, all the optimal solutions found by such
methods may not be practical solutions if, in their application, the parameters
cannot be guaranteed to be exactly the same as those speci"ed in the solution
obtained from the optimization process.

In the optimization studied here the search space is a discrete set of solutions; the
possible number of actuator combinations which can become large for more than
a few actuators. For each combination of actuators the maximum reduction of the
vibration transmission is partially dependent on the mechanical coupling between
the actuators and the region of concern and hence on the geometry of the structure.
Finding the best actuator positions relies on ranking the candidates on their
performance. However, if small changes to the geometry occur in service then the
vibration reduction achieved can vary drastically, and the best actuator positions
may not be those actually predicted by the ranking on performance of the nominal
structure. A robustness analysis is performed on structures with the best ranked
actuator positions in order to "nd the best structure in terms of a statistical
measure of the performance for a percentage of random perturbations.

The structure used in this study in a two-dimensional (2-D) lightweight cantilever
structure comprising 40 rigidly joined beams, organized as 10 periodic bays (see
Figure 1 in the companion paper [1], where the structure is described in detail). The
unwanted base vibration of the structure is represented as a transverse beam force
in one of the beams at the base.

This paper is structured as follows: section 2 describes the application of active
vibration control to the structure and the derivation of the cost function used,
section 3 discusses how the best performance ranked sets of actuator positions were
obtained. In section 4 the robustness of these actuator positions is studied. The
robustness of the control e!ort required to achieve the AVC performance for these
actuator positions is also studied. The conclusions drawn from the work are
presented in section 5, Appendix A gives further details on the AVC model used.

2. ACTIVE CONTROL OF VIBRATION AND APPLICATION TO STRUCTURE

Active control of vibration (AVC) was applied to the structure in order to reduce
the vibration of rightmost end beam (beam 40) of the structure. The AVC is
assumed to be a feedforward implementation with each frequency considered
separately, and hence there are no causality constraints. Feedforward control is
especially suited to tonal vibrations and their related harmonics, where the source
of unwanted vibration may be a fan or gyroscope motor, for example. It is also
possible to use this control strategy for broadband disturbances [5]. Feedforward
control requires a coherent reference of the vibration source which is not subject to
feedback from the control actuators. In the scenario considered here, the source of
vibration disturbance is modelled as a force applied to one of the beams near the
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base of the structure, whilst the reference signal is assumed to be independently
available from the source. Such a signal may be attained using a tachometer, for
example. As in Part I the parameter reduced is the energy level in the end beam. The
energy level arises from the continuous dissipation of power within the beam, which
occurs due to the damping properties of the beam and the net #ow of energy into
the beam. In most applications of AVC the square of a quantity is used (e.g.
velocity) and the formulation of the cost function in this case is well known [6]. The
use of power as a cost function is becoming more widely used; for example in
reference [7] the power was used as a cost function for vibration isolation and
power radiation. Pan and Hansen [8] demonstrate that the use of acceleration as
an estimate of power #ow in a beam is very inaccurate with the near "eld of a source
and this equally applied to structural discontinuities, such as joints. Brennan et al.
[9] studied di!erence power-based control strategies (to either minimize input
power to a beam or maximize secondary source output power) with the aim of
reducing power transmission along a beam. The best strategy was found to be
dependent upon whether the beam length was "nite or in"nite.

The energy level of the beam is simply related to the net power dissipated within
the beam. The cost function for the net power dissipated in the beam is "rst derived,
and then the average energy level is deduced. In the model of an active control
system used here the double-acting axial operating actuators are used. For
simplicity, it is assumed that the addition of an actuator to a beam does not alter
the mechanical properties of that beam. The point of application of the forces from
the actuators are o!set (by 10 mm) from the ends of the beams.

The base vibration is modelled as a single transverse force of 1 N applied at the
middle of one of the beams adjoined to the base (as shown in Figure 1 in the
companion paper [1]). In AVC terminology this is called the primary force. Two
vectors de"ning the e!ect of the force and velocity components at the joints of the
ends of beam 40, in the absence of any other forces (i.e., without active control
operative), are denoted by f

p
and v

p
. AVC applies secondary forces to &&counter''

vibrations on the structure. Their e!ect is de"ned by a vector describing the values
of secondary forces of each actuator f

s
, and either a &&transformed'' force or mobility

transfer matrix (C or Y) which represents the resultant force a velocity components
from these secondary forces at the joints at the ends of the beam 40. More detailed
information on the form of C and Y is a given in Appendix A. The net force and
velocity vectors, f and v, from the combination of both primary and secondary
forces are then given by the summations of these two components, thus

f"f
p
#Cf

s
. (1)

and

v"v
p
#Yf

s
(2)

where v
p
is the vector of the six velocity components due to the primary force only.

At each joint end the force and velocity are totally quali"ed in the
two-dimensional (2-D) model by two translational and one rotary components x,
y and h in the co-ordinate system as indicated in Figure 1 in reference [1]. The force
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and velocity vectors (f, f
p
, f

s
, v, v

p
) are of the same format, which comprises of six

components; the x and y direction translational forces or velocities and the moment
and rotational velocity at both ends of the beam 40, end 0 and end 1.

The #exural energy level in beam 40 arises due to a net dissipation of power due
to the beam damping. Proportional damping [10] is used. For harmonic vibration,
the average dissipated power is de"ned as half of the real part of the conjugate
product of the complex force and velocity vectors,

P"1
2

Re Mf HvN (3)

which can be more conveniently expressed in the linear form

P"1
4

MfH v#vH fN (4)

Using equations (1, 2) to express this in terms of f
s
, the independent variable for the

cost function minimization is given by

P"1
4

[fH
s

(CHY#YHC) f s#f Hs (CHs vp#YH f
p
)#(f

p
Y#v

p
C) f

s

#fH
p

v
p
#vH

p
f
p
]. (5)

This is written in a general quadratic form as

J"xHAx#xH b#bHx#c. (6)

The positive scalar c represents the value of the cost function due to the primary
excitation only (without active control; x"0). The term xHAx represents the value
of the cost function due to the secondary source excitation only (without primary
source of structural excitation), and this is obviously always positive (unless there is
an external power input into beam 40). Based on these physical grounds A will
always be positive de"nite. This is veri"ed in practice by con"rming that all the
eigenvalues of A are positive. Thus, the solution to equation (6) is thus a quadratic
minimum for all cases, as long as no actuator exists on beam 40, and the solution
will always minimize the power dissipation in this beam. The AVC system is
overdetermined (there are more degrees of freedom (d.o.f.s) for sensors than
actuators), A is of full rank, thus a minimum will always exist. The minimization of
the quadratic form in equation (6) is detailed in many texts, see reference [11] for
example. This yields the optimum secondary control vector

xo"!A~1b (7)

and, therefore, the optimum secondary force vector is

fs
e
"!(CHY#YHC)~1 (CHv

p
#YHf

p
) . (8)

The minimized value of the dissipated power is of the form [11]

J
0
"c!bHA~1b. (9)
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Hence, the minimum net dissipated power is explicitly

P
0
"1

4 C(fHp v
p
#vH

p
f
p
)!(f Hp Y#vH

p
C) (CHY#YHC)~1 (CH v

p
#YH f

p
)D. (10)

This can be expressed in the more computationally e$cient form as

P
0
"1

2
Re M fH

p
v
p
N!1

8
(fH

p
Y#v

p
C) (Re MCHYN)~1 (CHv

p
#YH f

p
). (11)

The average energy level was used as the cost function. This is related to the
dissipated power by a simple scaling factor, c

m
, the beam damping which is to be

independent of frequency, 20 s~1. Hence the energy level of the beam is, for the
general case,

E
LEV

(u)"P(u)/ c
m

. (12)

The average energy level over a frequency band, EM , is used as the parameter which is
minimized by the chose of the positions of the actuators, and is given by

EM "
1
n

n
+
k/1

E
LEV

(u
L
#(k!1)Du), (13)

where n is the number of frequency steps, Du the angular frequency spacing and u
L

the lower angular frequency point. Du/2n is 5 Hz for all cases considered in this
paper.

The total control e+ort required to achieve the AVC reductions is taken to be the
sum of the squares of the individuals secondary forces. The total control e!ort, qN

s
, is

then formally

qN
s
"

n
+
k/1

fH
s

(u
L
#(k!1)Du)f

s
(u

L
#(k!1)Du), (14)

where the de"nitions for equation (13) apply. The total control e!ort gives an
indication of the relative electrical power required by a practical AVC system for
each optimal solution presented. It does not represent the vibrational power
delivered to, or dissipated by, the actuators.

3. SELECTION OF OPTIMAL ACTUATOR POSITIONS

The success of the application of AVC depends strongly on the actuator
positions used. The physical reasons for this were discussed in section 2, in terms of
the dynamic mechanical &&coupling'' between the primary forces and the secondary
actuators and the end beam. The average energy level over the frequency band
150}250 Hz was used as the parameter to be minimized in this paper (see equation
(13)). This corresponds to maximizing the average attenuation of this parameter,
though in the "eld of AVC it is far more common to refer to the performance
improvement in this sense. The frequency band comprises 21 equally spaced
frequency points 5 Hz apart from 150 to 250 Hz, the same as those used for
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broadband optimization for the passive structure which was studied in the
companion paper [1]. That total control e!ort was also calculated for each case.
The control e!ort was evaluated for a 1 N transverse primary force and has the
units of N2. If the primary force were increased the control e!ort would increase in
proportion to the square of the primary force.

The optimum actuator positions were sought for the application of AVC using
one, two and three actuators. This was achieved by an exhaustive testing of all
possible combinations of actuators positions, for each number of actuators. Beam
40 was not considered as a candidate position (as explained in section 3). Hence for
one, two and three actuators there are 39, 741 and 9139 possible combinations
respectively. Because combinations and not premutations are sought it is
important that the algorithm generating the candidate actuator positions does not
produce and then discard repeated combinations. This would be very wasteful and
would a!ect the run time of such algorithms by a factor of 36! for the three actuator
case, for example. Even if the cost function were not evaluated in repeated
combinations the formulation of all the permutations would be still very expensive,
and can dominate the optimization evaluation time. The best 10 single actuator
positions of AVC systems having one, two and three actuators are shown in Figures
1, 2 and 3 respectively. These are shown from the top in order of decreasing
attenuation, the value of which is denoted along with the total control e!ort for
each single actuator position.

Figure 1 shows the 10 best positions for one actuator, for which the range of
attenuation is 10)8}8)5 dB. The actuator positions do not appear to follow any
particular rule; positions at the extreme ends of the structure are included in the
best 10. A general rule of thumb in active control is to treat the unwanted vibration
nearest to its place of origin. This does not seem to bear out in the case of best
ranked 10 candidates. One of the actuators is, however, on the same beam as the
external vibration is introduced. The secondary actuator produces an axial force
whilst the external primary force is, however, in the transverse direction.

The total control e!ort required to achieve each level of attenuation (for the
primary force used) is also shown in Figure 1. There is a large range of values
ranging from 1400 to 17 200. This illustrates the fact that the choice of candidate
must be made on the basis of both attenuation achievable and total control e!ort
required. The second-best ranked candidate is likely to be the position chosen in
practice since it has good control performance and a low control e!ort.

Figures 2 and 3 show the 10 best candidates for two and three actuators
respectively. For two actuators the achievable values of attenuation range from
31)1 to 26)9 dB, with total control e!ort ranging from 11000 to 53 900. Here the
third ranking set of actuator locations appears to be a good practical choice since it
has good control performance and a low control e!ort. For three actuators, the
range of achievable values of attenuation is 50)8}44)0, dB, and the total control
e!ort range is 24 400}244000. This range is large due to one &&rogue'' set of actuator
locations with a particularly high value of control e!ort. With two actuators, there
again appears to be no particular rule in the placement of the actuators for the best
10 AVC set of actuator positions. However, the actuator positions chosen are found
to be only in the "rst seven leftmost structure bays. This trend in seen to continue



Figure 1. The 10 best performance ranked single-actuator positions for the frequency band
150}250 Hz.
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for the three actuator case, the actuators now only appearing in the "ve leftmost
structure bays; the left-half of the structure.

Figure 4 shows the best 10 actuators position for four actuators. This case is not
considered any further in this paper since the high levels of attenuation shown (up
to about 119 dB) would not be achievable in practice using a control system with
a realistic noise #oor. However, the inclusion of these results does demonstrate the
trend further, that the larger the number of actuators the more the actuator



Figure 2. The 10 best performance ranked two-actuator positions for the frequency band
150}250 Hz.
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position are found to be closer to the primary excitation at the base of the structure.
Here the actuators are restricted to the four leftmost bays. Furthermore, the best
"ve sets of actuator positions were found to only use actuator positions in the three
leftmost structure bays.

The e!ective &&total control e!ort'' of the primary force is 21 N2, since the primary
force at each frequency is 1 N. It is interesting to note that the control e!ort
required by the AVC system is much larger is all cases. The smallest control e!ort of



Figure 3. The 10 best performance ranked three-actuator positions for the frequency band
150}250 Hz.
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all the optimal positions presented is for the single actuator position SG
}
B, and is

greater by a factor of over 60.
The value of attenuation achieved in the performance of the structures shown in

Figures 1}4 is that of the frequency band average attenuation, as described in
equation (13). Within the band various levels of attenuation are achieved at
individual frequencies. Figure 5 shows the attenuation response at the 21 individual
frequencies considered, for the application of AVC with actuators positions DB

}
A



Figure 4. The 10 best performance ranked four-actuator positions for the frequency band
150}250 Hz.
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(in Figure 2). Since a feedforward control strategy is used, the AVC system has no
e!ect on the performance of the vibrational energy in beam 40 outside the band of
frequencies controlled.

Comparing the vibrational energy reduction achieved by both the passive
optimization (detailed in the Part I) and active optimization (using AVC), it is
found that the application of AVC with two actuators produces magnitudes of
reductions similar to those of passive case [1]. Whilst in Figure 1}3 the reductions



Figure 5. Frequency response of the structure without AVC (**), and reduced response obtained
with AVC (]*]*]*), within frequency band applied, for actuator positions DB

}
A in Figure 2.
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in vibration are given in decibels, but in the next section, Figure 6, for example,
shows the vibration reductions with a non-decibel scale, allowing the vibration
reductions obtained to be easily compared with Figures 7 and 11 in the companion
paper [1].

4. STUDY OF ROBUSTNESS OF ACTUATOR POSITION COMBINATIONS

The study of the robustness of the performance of the various actuator positions
to geometric perturbations was performed in order to determine which of the
candidates is more practical to implement. The same set of 300 perturbations was
applied to the structure as used for the robustness analysis of the passively
optimized structures in reference [1]. The perturbations are uniformly distributed
between $10 mm and are applied to both the x and y co-ordinates of each of the
middle 18 joints of the structure. The robustness analysis is only applied to the two-
and three-actuator positions sets, as these systems are most likely to be used in
practice.

In the robustness of the passively optimized candidates the geometric
perturbations change the mechanical impedance between the externally applied
force and ends of beam 40. This directly a!ects the average energy level in beam 40.
However, in the optimization considered in this paper is a discrete one; the



540 D. K. ANTHONY AND S. J. ELLIOTT
solutions are sets of actuator positions. These best 10 actuator positions are chosen
on the basis of a ranking of the nominal (unperturbed) performance. When the
system undergoes perturbations the achievable attenuation is re-evaluated is order
to show how well the actuator positions originally chosen with the nominal
structure perform under such geometric perturbations.

Evaluating the perturbed performance of an AVC system in this manner
corresponds to applying the AVC system to a real structure where manufacturing
tolerances are the perturbations from the nominal design. It is also assumed that
the controller has an accurate model of the plant [11 Chapter 5]. If the plant were
to change over periods comparable or less than the update period of the plant
model, the AVC system would be operating with an inaccurate model of the plant.
This could be due to geometric changes of the structure caused by signi"cant
changes in the static load, or may be through thermal expansion and contraction.
The perturbation analysis performed here is not intended to cover robustness under
these conditions. These perturbations are likely to be structured, and the
perturbations to each joint position could no longer be treated independently, as in
this analysis. The robustness of the control performance and e!ort for the two- and
three-actuator systems have been evaluated.

Figures 6 and 7 show the results of the perturbation analysis for the values of
achievable attenuation for each of the best 10 ranked two- and three-actuator AVC
Figure 6. Statistical distribution and 95% probability limits for the AVC performance, for
frequency band 150}250 Hz, of the 10 best ranked two-actuator positions.



Figure 7. Statistical distribution and 95% probability limits for the AVC performance, for
frequency band 150}250 Hz, of the 10 best ranked three-actuator positions.
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actuator positions (ranked on nominal performance). The results are also
summarized in Tables 1 and 2. The "gures consist of histograms showing the
statistical distribution of the minimized energy level in beam 40.

The results for each structure are displayed in order of ranking under nominal
conditions, the value of which is represented by the this solid line on each
histogram. The 95% probability limit is shown by a solid bold line. This indicates
the value of of minimized energy level which, for the 300 experiments performed, is
less or equal than this value for 95% for all perturbations. The 300 perturbations
used were found to be su$cient to "nd the &&shape'' of the distribution, and hence
this will be an estimate of the actual 95% limit. The graphs show the reduced
vibration energy level with logarithmic axes as in Figure 11 in the Part I for the
perturbation analysis for the passively optimized structures to facilitate
comparison between the two optimization cases. In the "eld of AVC, it is more
common to deal with value of attenuation express in decibels; a second y-axis on
the right is included for this purpose.

Considering "rst the two actuator AVC actuator positions in Figure 6 it is seen
that DB

}
D is the most robust candidate, for which the entire spread of the

statistical distribution is about 3 dB, while most of the other actuator positions
appear to have a statistical spread of about 10 dB. Using three actuators, Figure 7,
it is seen that the majority of the distributions have a range of one order of



TABLE 1

Results summary for A<C using best performance ranked two-actuator positions over
bandwidth 150}250 Hz

Structure Nominal attenuation 95% probability limit Nominal control e!ort
(dB) attenuation (dB) (N2)

DB
}
A 31)1 28)1 43500

DB
}
B 28)0 25)2 22800

DB
}
C 27)8 25)6 13600

DB
}
D 27)5 26)8 53900

DB
}
E 27)4 24)4 38300

DB
}
F 27)4 25)4 49700

DB
}
G 27)4 25)2 13400

DB
}
H 27)2 24)6 20100

DB
}
I 27)1 23)6 33200

DB
}
J 26)9 22)9 11000

TABLE 2

Results summary for A<C using best performance ranked three-actuator positions
over bandwidth 150}250 Hz

Structure Nominal attenuation 95% probability limit Nominal control e!ort
(dB) attenuation (dB) (N2)

TR
}
A 50)8 47)6 46100

TR
}
B 49)1 43)9 45300

TR
}
C 47)3 43)9 224000

TR
}
D 46.4 42)9 55600

TR
}
E 46.1 44.7 54900

TR
}
F 46)0 44)9 40400

TR
}
G 44)8 37)5 24400

TR
}
H 44)6 40)9 52700

TR
}
I 44)4 41)3 33200

TR
}
J 44)0 37)4 29100

542 D. K. ANTHONY AND S. J. ELLIOTT
magnitude with a few, notably actuator positions TR
}
G & TR

}
J, whose

distribution spread approaches 20 dB. In general, the three-actuator positions
achieve reductions of 15}20 dB better than those with two actuators. If robustness
alone is the primary consideration then DB

}
D is the best two-actuator position.

There is no obvious &&best choice'' for the three-actuator positions in terms of
robustness.

Considering the 95% probability limit a selection of the actuator positions may
be made in terms of both robustness and absolute performance. For 95% of
perturbations the performance is equal to or better than the value of the 95%



ROBUSTNESS IN OPTIMAL DESIGN, II 543
probability limit. In most applications the minimum reduction is the important
factor. For the two-actuator positions the choice of nominally well-ranked
positions DB

}
B and DB

}
C becomes less favourable. It is also seen that there is

little di!erence in performance between DB
}
A and DB

}
D in terms of this criterion,

but the latter is more robust, and even the worst perturbed performance is better
than the majority of the perturbed performance values for DB

}
A. This set of

actuator positions is also seen to have a small probability of having much poorer
performance than the 95% limit. Considering the 95% probability limit for the
three-actuator positions, it is seen that the nominally best ranked actuator position
is also the best choice with this criterion.

There is another consideration in applying AVC apart from the achieved
performance: the control e!ort required to achieve this. There will be a limit on the
control e!ort with a practical system, either individual actuator e!ort or total
system e!ort. In general, AVC actuator positions with smaller required control
e!ort are preferable. It is possible to augment the cost function used here in the
ranking of each AVC actuator position, with a term to penalize positions with
higher control e!orts and produce a bias towards lower control e!ort solutions.
This was implemented [12], but was not considered here, since it would
unnecessarily complicate the study. Robustness analysis should, however, also
consider the control e!ort. As the structure is perturbed the control e!ort required
is likely to change even if the performance is insensitive to such changes, if the
control e!ort increases signi"cantly above its nominal value then a practical system
may not be able to maintain the predicted vibration reduction. This is avoidable if
the increase is predicted and the demand remains feasible.

Figures 8 and 9 show the results of a robustness analysis on the total control
e!ort for the best 10 two- and three-actuator positions, with same format as in
Figure 6. The same perturbations as before were used. It is reiterated that the scale
used on the graph is logarithmic, and that a factor of over 5 exists between the
nominal control e!ort for TR

}
B and TR

}
C, for example, which emphasizes the

importance of the consideration of control e!ort. It is seen that for both two- and
three-actuator systems the range of total control e!ort, both nominal and
perturbed, are similar even though the three-actuator case produces larger
reductions of the vibration. In general, it is seen that there is less diversity in the
robustness of the control e!ort that with the performance. However, the cost of
increased control e!ort is often realized in linear terms, and the absolute value of
the control e!ort is important. Actuator arrangement DB

}
D, which is favoured in

terms of its performance is seen to require, for 95% of the perturbation cases, about
four times more total control e!ort than DB

}
C. The compromise of performance

and control e!ort will vary depending on the application. Considering the
three-actuator positions, results it is seen that TR

}
C, whilst well ranked in terms of

performance, is particularly costly in terms of control e!ort. Initially, TR
}
F may

seem to be a &&bad choice'' due to the large spread of the distribution. However, it is
apparent that the &&rogue'' high value of control e!ort arises from the results of only
one perturbation, and if this particular perturbation value had not appeared in the
set of 300 perturbations then this set of actuator positions would appear more
robust. This justi"es the use of a 95% probability limit, and not simply the worst



Figure 8. Statistical distribution and 95% probability limits for the AVC total control e!ort, for
frequency band 150}250 Hz, of the 10 best ranked two-actuator positions.
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case. Indeed, using the 95% probability limit, TR
}
F is ranked third in terms of the

minimum expected control e!ort.
Hence, for an AVC system, it is necessary to consider both the performance and

control e!ort when considering robustness. Each set of actuator positions can be
robust in terms of performance, total control e!ort, or both. When ranked in terms
of nominal performance the more performance robust a set of actuator positions is,
the more likely its ranking will remain high in terms of the 95% probability limit.
However, control e+ort robustness is also important if the application is to be
realized practically.

5. CONCLUSIONS

Feedforward active vibration control (AVC) was applied in a simulation study to
a lightweight cantilever structure in order to reduce the vibration transmission
from the base to a beam at the end of the structure. The parameter minimized was
the energy level within the end beam of the structure, averaged over 150}250 Hz.
The optimization problem considered was to "nd the actuator positions that
achieve the greatest reductions in vibration. This was done by exhaustive search,
since, this is feasible in this case even though the total number of possible
combinations increases rapidly with number of actuators used. AVC systems using



Figure 9. Statistical distribution and 95% probability limits for the AVC total control e!ort, for
frequency band 150}250 Hz, of the 10 best ranked three-actuator positions.
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up to four actuators were considered, although the robustness analysis was only
extended to the two- and three-actuator cases. These produced realistic and
practically achievable reductions. Using a two-actuator AVC system, similar
reductions were obtained as with the passive optimization used in the "rst paper.
An AVC system operating with any of the optimal actuator positions presented
requires a control e!ort much larger than the equivalent control e!ort of the
unwanted vibration souce. The optimal actutor position with the smallest control
e!ort is still over "fty times greater than that of the vibration source itself.

The robustness of the 10 best-ranked AVC actuator positions on the structure for
one to three actuators was then studied, in order to "nd the positions which are
more practical in the sense of being more resistant to small changes in the structure
geometry. As in Part I, this was achieved by applying a set of random perturbations
enabling the statistical distribution of a performance to be obtained. Another
consideration, other than the performance, which must be considered in the
application of AVC is that of the control e!ort required to achieve the predicted
vibration reductions. This may be a consideration when choosing the best solution
under nominal conditions and could be incorporated into the optimization search.
However, under structural perturbations, the control e!ort is seen to increase by
factors over 10 times for some AVC actuator arrangements. If the control e!ort is
not considered and under structural perturbations it is seen to rise beyond the



546 D. K. ANTHONY AND S. J. ELLIOTT
capabilities of a practical system then the predicted performance (nominal or
robust) will not be realized. Hence, for AVC systems, there are two types of
robustness; performance robustness and control e+ort robustness. A 95% probability
limit was applied to performance and control e!ort statistical distributions
obtained from the perturbations applied. This is the basis for determining the worse
value (for performance or control e!ort), which will only be violated for an
estimated 5% of perturbation instances (assuming the same perturbation
distribution).

A further companion paper is planned in which the vibration transmission of the
structure studied here is minimized by using both passive methods (or geometric
redesign, as in reference [1]) and active methods (AVC system using optimally
placed actuators).
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APPENDIX A: FORMULATION OF PLANT MATRICES

The two &&transformed'' plant matrices used in the main text, C and Y, are
themselves comprised of two terms, so equations (1) and (2) may be written as

f"f
p
#C@ Tf

s
, (A1)

v"v
p
#Y@ Tf

s
, (A2)

where C@ and Y@ are the force transfer and mobility transfer matrices, which de"ne
the mechanical coupling between the actuators and their e!ect on the force and
velocity components at the ends beam 40. T is a transformation matrix which maps
each axial secondary force onto six components in each plant matrix. This is
required because the force and velocity components at the end of beam 40 are not
independent in all d.o.f.s, but are solely de"ned by the axial forces of the force
vector, f

s
.

For two secondary force actuators, equation (A1) is then
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where, for example, f 40,0
x

is the x-axis force component at end 0 of beam 40. The
submatrices in the C@ matrix are of the format

C40,0
1A

"C
c40,01A

x
0 0

0 c40,01A
y

0

0 0 c40,01Ah
D , (A4)

where c40,01A
x

is the individual force transfer function for the x-axis force component
at end 0 of beam 40 for a unit axial force at one end (A) of the beam where the "rst
secondary actuator is employed. This notation is extended to responses in the
y-axis, rotational components; from end B of the actuator beam position; and for
end 1 of beam 40. The signs of the submatrices for a secondary drive from end B are
negative to give the proper representation of a double-acting actuator. The reason
for the diagonal form of the submatrices is to ensure that all the net force and net
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velocity components remain independent and only combined in the "nal inner
product between f and v so that the power #ow components from the six d.o.f.s are
summed and not the force or velocity components.

The M1N submatrices in equation (A3) are vectors which are explicitly

M1N"(1 1 1 1 1 1)T (A5)

and map a single value for each secondary actuator onto the all six individual
transfer function it relates to. For convenience, the force transfer matrix and the
transformation matrix are combined to form a transformed force transfer matrix C.

In a similar manner for Y is the transformed mobility transfer matrix, where the
Y@ matrix (A2) and its submatrices are de"ned:

Y@"CG
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1B
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H G
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Y40,0
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"C
y40,01A

x
0 0

0 y40,01A
y

0

0 0 y40,01Ah
D , (A6b)

where y40,01A
x

is the individual transfer mobility, detailing the x-axis force component
at end 0 of beam 40 for a unit axial force at end A of the beam where the "rst
secondary actuator is employed.
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